
NOTATION 

Here p, r, t, are pressure, coordinate, time; h, r~ coordinate and time steps; u, v, grid functions; q, well yield; 
ro, radius of well; a, ~, g, system parameters; a superimposed circumflex denotes values of the grid functions for the 

next time layer. 
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DESCRIPTION OF THE STRENGTH OF POROUS BODIES ON T H E  

BASIS OF PERCOLATION THEORY 

Y u .  N .  K r y u c h k o v  UDC 536,24:539.217.1,4,001 

A method is proposed for estimating the strength of porous materials in destructive rupture on the basis 
of the percolation theory of regularly packed spheres. The results of calculation by this method are in 
good agreement with experimental data in the whole porosity range of the material. 

Percolation theory [1, 2] is widely used to describe various probabilistic processes. There have been numerous 
studies of the elasticity of two- and three-dimensional percolation systems, for example [3-7]; it was noted in [4, 5] 
that the elasticity and conductivity problems for the volume elastic modulus of gel at the gel point belong to different 
universality classes. In [7], the method of reduction to an elementary cell was used to determine the moduli of the 
percolation systems, permitting considerable simplification of the calculations. An analogy between the mechanical 
characteristics and thermal conductivity of porous powder materials was made in [8]. In [9], percolation theory was 
used to describe the strength and theological characteristics of disperse systems; however, the use of Bethe lattices 
limits the application of the given approach to transitions of sol-gel type. The percolational approach to the 
description of the strength of porous media was considered in [10]; the dependence of the relative strength G (short- 
term resistance of the material in rupture referred to its maximum value) on the relative particle concentration m/m o 

= (1 - -  n)/( l  -- IIo) where IIo is the porosity of the system corresponding to the densest random packing of the 
particles, was derived. One advantage of this approach is the elimination of the traditional consideration of the 
strength using the concept of the "failure surface," which leads to complication in taking account of statistical 
inhomogeneities of the system, for example, macropores. The calculation method is based on an analogy between 
conduction and the strength of a percolation system, but this analogy is more explicit if the proportion of conducting 
point of the percolational system is identified with the mean relative coordination number v = (Z + I)/(Z o + 1), which 
characterizes the proportion of possible particle bonds realized on average in the given case. 

An analytical expression from [1 I] is used to calculate the mean coordination number of a lattice of randomly 
packed spherical particles as a function of the porosity of the packing 
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Fig. 1. Generalized form of inhomogeneous model: a) general view; b) model with interpenetrating 

components. 

Fig. 2. Dependence of the relative strength of a body on its porosity: points) experimental data; curve) 
calculation by the method here proposed. 

Z =: 
n + 3 + Vw-- lOn +-9 

2n (1) 

The coordination Z o of a lattice of randomly close-packed spheres (the porosity II o is 0.39 according to [10]) is 

7.28 according to Eq. (1). 
To determine the percolation threshold of the given lattice, it is convenient to use the dependence 

'v -- 0,15/(1 -- Tic) , (2) 

which provides a good description of the influence of porosity on the percolation threshold of regular three- 

dimensional lattices [2]. 
It follows from Eqs. (1) and (2) that 

(II~, + 3 -F -I/FI~ - -  IOFI~, -F 9)/(21q~:) -F 1 

(l]o --[- 3 + ]/ISIo - -  10Fl o -F 9)/(211o) + 1 

0,15 
1 - -  YI~ 

(3) 

The threshold lattice porosity IIr 0.729 is obtained from Eq. (3) by an iterative method for II o = 0.39. Then, 
substituting this value of IIe into Eq. (1), the coordination number of the lattice Z e = 3.584 is determined and hence 

the percolation threshold u e -- 0.553. 
Knowing u e, the relative strength close to the percolation threshold may be calculated using the scaling 

asymptote. 
Far from the percolation threshold, the dependence of the lattice conductivity on its coordination number is 

used, taking account of the analogy between the strength and conductivity of percolational systems [10] 

2Z-- 2 
G (v) : 1 (1 --- v). 

Z - -  2 (4) 
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Substituting Eq. (1) into Eq. (4), it is found that 

(r] @ 3 ~- ~ loll + 9)/17 -- 2 { I - ([] + 3 + -VII z--. lOgl +9)/(2U) ~- 1 'I (5) 
O (H) -- ] - -  (FI -[- 3 + ] / H  z - -  10U @ 9)/(21q) 7-2- \ 8,2843 ] " 

Analogous expressions for the relative strength and scaling asymptote obtained in [10] are not consistent, which 

prevents the determination of intermediate values of  the relative strength and considerably reduces the value of the 

given approach. To determine intermediate values of  the strength, the following procedure is adopted. 

Equation (5) is valid as u ---, 1. To determine its limit of  applicability in the other direction, the method of 

reduction to an elementary cell is used [11]. For maximum correspondence with the physical essence of the given 

problem, the method is modif ied as follows. The form of the isolated cluster in the e lementary cell is changed so that 

the system becomes bound on reaching a threshold relative concentration me, but has zero conductivi ty (Fig. la). This 

change corresponds to a greater extent with the physical essence of  the percolation processes. The max imum core size 

of the isolated cluster l e in the given model of  a heterogeneous medium is determined f rom the expression 

m e = 2 ( l c / L )  z - -  (lc/L)< (6) 

For li e = 0.729, the result l r  = 0.4133 is obtained. 

With fur ther  reduction in porosity in this model increase in disperse-phase concentration rn corresponds to 

increase in cross section of  the bridges between isolated clusters up to the format ion of a model with interpenetrating 

components (Fig. lb). 

The minimal disperse-phase concentration in the formation of  a model with interpenetrating components is 
written in the fo rm 

l??in.min= 3 (lc / L ) z - -  2 (l~ : L )'% (7) 

For m e = 0.271 and I r  = 0.4133, it is found that min.min = 0.442, Z i n . m i n  = 4.919, Uin.min = 0.7145, and 11in.max = 

0.558. 

Substituting IIin.max into Eq. (5) gives G(I I in .max  ) = 0.233. 

The law of variation in cross section of the bridges between the isolated clusters, taking account of the 

complex topology of the infinite cluster and the probabilistic character of  its format ion and also ensuring smooth 

transition in Eq. (5) at Pin.max, may be written in the fo rm 

where t = 1.8 +_ 0.2. 

For 11in.max 

, '  %, _ - - . .  " V e  ' ! 

G (1"-]) := G ( l ] i n . m a x )  ( 1 
�9 . \ ~ ' i n . m i n - - X ' c  J 

/ 

-.~: Vin.min, 

(8) 

= 0.558, ur = 0.553, G(Ilin.max ) -- 0.233, and t = 1.8, Eq. (8) takes the fo rm 

l- : - ~  ll)[I ~ ~' (211 i G(H)=,, 0,233 (H r o - -  �9 T.A } 
[ 1,3379 

- 3,424 i 
J (9) 

0,558 <t ,1-] ~.-< 0,729 

Curves of  G(II) calculated f rom Eqs. (3), (5)-(7), and (9) with 1I 0 = 0.39 are shown in Fig. 2 in comparison with 

experimental  data obtained in the extension of samples made f rom polystyrene powder [10]. It is evident that the 

theoretical curve and the experimental  data are in sufficiently good agreement  over the whole range of porosity 
variation of  the system. 

CONCLUSION 

The method proposed in the present work for  describing the strength of disperse systems allows theoretical 
expressions that are in good agreement with experimental  data to be obtained for  samples obtained by sintering 
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randomly packed particles, over the whole range of porosity variation. This method may be used to predict the 

strength of porous materials. 

NOTATION 

Here G is the relative strength of porous materials; m, volume concentration of solid phase; II, porosity of 
system; II o, porosity of system corresponding to the densest random packing; Z, coordination number of system; v, 
relative coordination of system; v c, percolation threshold; l c, maximum core size of isolated cluster; L, size of 
macroscopic cube, no smaller than the correlation radius between conducting particles; II c, threshold porosity of 

system. 
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